THE USE OF GENERIC SKILLS IN COMPLETING MASTERS THESES. INSIGHT FROM ONLINE MASTERS IN TRANSLATION STUDENTS

Anne Bécart

Instituto Superior de Estudios Lingüísticos y Traducción - ISTRAD (SPAIN)

Abstract

In accordance with the Bologna process which began in 1999, students must obtain 240 ECTS credits to graduate within the European Higher Education Area. Receiving said credits corresponds to acquiring a series of established skills determined by the degree as well as generic skills common to all degrees, which concern those skills graduating students are expected to have when joining the workforce. In the current socio-economic context, job scarcity and the increasingly important level of training for youth in the labor market mean extending studies to earn a master’s degree whether it be of a practical nature or with the aim of completing research. For a considerable portion of students that select the latter option, far from “finishing their studies” with the completion of a master’s thesis, they instead intend to open the possibility of doctoral studies and, along with this, “to begin their professional career” in the area of university research. This reality in career guidance for university students leads us to pose the following question: Do first cycle university studies prepare students for research? This paper aims to answer this from the student perspective. Analyzing responses to a questionnaire based on the generic skills of the Tuning Project, insight from master’s in Translation students is presented regarding the genuine skills needed to complete a master’s thesis listing shortcomings and resources. Of the results obtained, a proposal for training intervention is made in order to strengthen the profile of “research personnel in training” at the postgraduate level.

Keywords: Higher Education, research personnel in training, generic skills, Master’s thesis, Tuning Project.

1 INTRODUCTION

The present study aims to answer the question “Do first cycle university studies prepare for research?” from the student perspective. For that purpose, it was based on the Tuning Project theoretical focus, originating in 2003 from the Berlin Communiqué, in which the European member States were encouraged to “elaborate a framework of comparable and compatible qualifications for their higher education systems, which should seek to describe qualifications in terms of workload, level, learning outcomes, competences and profile” [1]. The competence-based education model is a valuable paradigm in this context [2], since skills development helps to construct deeper and long-lasting learning [3].

We strive to verify that the Tuning generic skills, agreed upon and validated as common between university graduates of the European Higher Education Area (hereafter, EHEA) [4], are useful to provide adaptability to the professional profile of university students in a professional context of research activities. Indeed, the current lifelong learning society, which requires higher levels of employability from university graduates, can’t ignore the reality of the growing selection of academic and research careers among higher education students.

This is especially true in Spain, where the economic crisis of 2008 and its correlative unemployment rate gave rise to a massive enrollment in second cycle studies (Master’s Degree) in order to enter third cycle studies (Doctorate Degree) among the younger generations.

In order to collect empirical data that allow us to better understand the true profile and situation of EHEA students before this professional possibility [5], we conducted a Tuning-based survey about generic skills among Translation students following a research-oriented Master’s thesis in a Spanish university center.

2 METHODS

Our research questions were the following:
1 Do the first cycle university graduates consider the Tuning generic competences as useful in order to lead a research project such as a Master's thesis?

2 Do graduates really consider that they acquired those skills during their first cycle studies?

For the purpose of answering these questions, we led a quantitative-descriptive study using an online survey.

The survey population was Master's Degree students in Translation enrolled at the Instituto Superior de Estudios Lingüísticos y Traducción – ISTRAD (Seville, Spain) who are currently doing an online Master's thesis. The survey was posted in April 2017 on ISTRAD's different closed Facebook groups for 2 weeks.

The data collection tool was a questionnaire, inspired by the Tuning questionnaire. In addition to that original tool, the questionnaire includes 2 Likert-scale questions about the 30 generic competences identified as common among Higher Education students of the EHEA, according to the outcomes that the Tuning Project obtained by consultation of more than 20,000 European graduates, employers and academics [1].

The 2 Likert-scale questions addressed to the target population were:

1 Do you think that the following competence is important in order to achieve a Master’s thesis? (Use a rating scale from 1 to 4; 1 = not at all, 2 = barely, 3 = to a fair extent, 4 = to a large extent)

2 How well do you currently perform in this competence? (Use a rating scale from 1 to 4; 1 = not at all, 2 = barely, 3 = to a fair extent, 4 = to a large extent)

The measured skills were classified into three clusters, in agreement with the Tuning classification: instrumental competences (cognitive abilities, methodological abilities, technological abilities and linguistic abilities), interpersonal competences (individual abilities like social skills, social interaction and co-operation) and systemic competences (abilities and skills concerning whole systems; combination of understanding, sensibility and knowledge; prior acquisition of instrumental and interpersonal competences required).

Table 1 below reflects the codification employed in the data processing.

<table>
<thead>
<tr>
<th>Instrumental competences</th>
<th>Interpersonal competences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacity for analysis and synthesis</td>
<td>Critical and self-critical abilities</td>
</tr>
<tr>
<td>INSC1</td>
<td>INTC11</td>
</tr>
<tr>
<td>Capacity for organization and planning</td>
<td>Teamwork</td>
</tr>
<tr>
<td>INSC2</td>
<td>INTC12</td>
</tr>
<tr>
<td>Basic general knowledge</td>
<td>Interpersonal skills</td>
</tr>
<tr>
<td>INSC3</td>
<td>INTC13</td>
</tr>
<tr>
<td>Grounding in basic knowledge of the profession</td>
<td>Ability to work in an interdisciplinary team</td>
</tr>
<tr>
<td>INSC4</td>
<td>INTC14</td>
</tr>
<tr>
<td>Oral and written communication in your native language</td>
<td>Ability to communicate with experts in other fields</td>
</tr>
<tr>
<td>INSC5</td>
<td>INTC15</td>
</tr>
<tr>
<td>Knowledge of a second language</td>
<td>Appreciation of diversity and multiculturalism</td>
</tr>
<tr>
<td>INSC6</td>
<td>INTC16</td>
</tr>
<tr>
<td>Elementary computing skills</td>
<td>Ability to work in an international context</td>
</tr>
<tr>
<td>INSC7</td>
<td>INTC17</td>
</tr>
<tr>
<td>Information management skills (processing information from different sources)</td>
<td>Ethical commitment</td>
</tr>
<tr>
<td>INSC8</td>
<td>INTC18</td>
</tr>
</tbody>
</table>
Systemic competences

<table>
<thead>
<tr>
<th>SYSC19</th>
<th>SYSC20</th>
<th>SYSC21</th>
<th>SYSC22</th>
<th>SYSC23</th>
<th>SYSC24</th>
<th>SYSC25</th>
<th>SYSC26</th>
<th>SYSC27</th>
<th>SYSC28</th>
<th>SYSC29</th>
<th>SYSC30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacity to apply knowledge in practice</td>
<td>Research skills</td>
<td>Capacity to learn</td>
<td>Capacity to adapt to new situations</td>
<td>Capacity to generate new ideas (creativity)</td>
<td>Leadership</td>
<td>Understanding of cultures and customs of other countries</td>
<td>Ability to work autonomously</td>
<td>Project design and management</td>
<td>Initiative and entrepreneurial spirit</td>
<td>Concern for quality</td>
<td>Will to succeed</td>
</tr>
</tbody>
</table>

The data analysis consisted of statistics reports provided by an Excel book, where the columns represent the numerical answers from 1 to 4 and the rows represent the students.

3 RESULTS

The final sample of the study consisted of 58 students (Male: 19%, Female: 79.3%, Other: 1.7%) of 8 nationalities (Spain: 45, the USA: 1, Uruguay: 1, Argentina: 2, France: 2, Italy: 1, the UK: 1, Germany: 2, China: 1, Venezuela: 1), with a diverse range of ages (18-25: 31%, 25-30: 29.3%, 30-35: 20.7%, >35: 19%). Their labor situation reflects an important employment rate that implies managing a professional-personal life balance (50% full-time work, 31% part-time work, 12.1% only studying, 6.9% other).

The responses obtained to our questionnaire regarding the genuine skills needed to complete a Master's thesis are presented in Table 2 that appears below.

Table 2. Students’ perception about the importance of each competence for research activities and their current personal ability

<table>
<thead>
<tr>
<th>Competence code</th>
<th>Importance for research activities (Average out of 4)</th>
<th>Current personal ability (Average out of 4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYSC30</td>
<td>3.6</td>
<td>3.4</td>
</tr>
<tr>
<td>SYSC29</td>
<td>3.55</td>
<td>3.74</td>
</tr>
<tr>
<td>SYSC28</td>
<td>3.36</td>
<td>2.86</td>
</tr>
<tr>
<td>SYSC27</td>
<td>3.34</td>
<td>2.81</td>
</tr>
<tr>
<td>SYSC26</td>
<td>3.83</td>
<td>3.45</td>
</tr>
<tr>
<td>SYSC25</td>
<td>3.31</td>
<td>3.33</td>
</tr>
<tr>
<td>SYSC24</td>
<td>2.6</td>
<td>2.55</td>
</tr>
<tr>
<td>SYSC23</td>
<td>3.67</td>
<td>2.91</td>
</tr>
<tr>
<td>SYSC22</td>
<td>3.47</td>
<td>3.21</td>
</tr>
<tr>
<td>SYSC21</td>
<td>3.74</td>
<td>3.38</td>
</tr>
<tr>
<td>SYSC20</td>
<td>3.69</td>
<td>2.81</td>
</tr>
<tr>
<td>SYSC19</td>
<td>3.69</td>
<td>3.21</td>
</tr>
<tr>
<td>INTC18</td>
<td>3.57</td>
<td>3.48</td>
</tr>
<tr>
<td>INTC17</td>
<td>3.17</td>
<td>3.19</td>
</tr>
<tr>
<td>INTC16</td>
<td>3.14</td>
<td>3.22</td>
</tr>
<tr>
<td>INTC15</td>
<td>3.14</td>
<td>2.66</td>
</tr>
<tr>
<td>INTC14</td>
<td>2.71</td>
<td>2.72</td>
</tr>
<tr>
<td>INTC13</td>
<td>2.9</td>
<td>2.93</td>
</tr>
<tr>
<td>INTC12</td>
<td>2.31</td>
<td>2.67</td>
</tr>
<tr>
<td>INTC11</td>
<td>3.62</td>
<td>3.09</td>
</tr>
</tbody>
</table>
3.1 Importance of the competences for research

The results show that the competences INTC12 (Teamwork), SYSC24 (Leadership), INTC14 (Ability to work in an interdisciplinary team) and INTC13 (Interpersonal skills), presenting a score lower than 3 out of 4, are considered as less important than others in a research project. Interestingly, these 4 competences are related to interpersonal relations; this aspect may mean that research activities are globally considered as individual and solitary work.

On the contrary, the competences presented as most important (over 3.70 out of 4) are SYSC21 (Capacity to learn), INSC2 (Capacity for organization and planning), INSC5 (Oral and written communication in your native language), SYSC26 (Ability to work autonomously) and INSC8 (Information management skills). They belong to the instrumental and systemic clusters and all refer to learning skills and the application of learning contents.

In summary, these results show that the students surveyed considered most interpersonal skills as less important than instrumental and systemic skills (except for critical and self-critical abilities and ethical commitment), and that information management, autonomy, communication in the native language and planning skills are the most valued.

3.2 Current ability

The first reflection that springs to mind observing the table above is the following: whereas only 4 competences were considered as not very important (less than 3 out of 4) for research activities, no fewer than 10 competences are mentioned as items of poor performance: SYSC24 (Leadership), INTC15 (Ability to communicate with experts in other fields), INTC12 (Teamwork), INTC14 (Ability to work in an interdisciplinary team), SYSC27 (Project design and management), SYSC20 (Research skills), SYSC28 (Initiative and entrepreneur spirit), SYSC23 (Capacity to generate new ideas), INTC13 (Interpersonal skills) and INSC10 (Decision-making). We could understand this fact as an expression of a generalized poor self-image in skills management. Regarding the nature of the concerned competences, the large range of selected skills doesn't withhold some surprising information: “Research skills” only obtains a score of 2.81…

Concerning the best managed skills, in line with the previous considerations, a single competence is scored over 3.7: SYSC29 (Concern for quality). Should we believe that this competence is precisely the one that causes the low self-consideration in the other competences? Although they obtained a lower score (3.4 to 3.5), the competences SYSC30 (Will to succeed), SYSC26 (Ability to work autonomously), INTC18 (Ethical commitment) and INSC5 (Oral and written communication in your native language) at least show that motivation, autonomous work, ethical thinking and communication are widely represented among the responding students.

4 CONCLUSIONS

The research questions can be answered as follows. On one hand, the university graduates surveyed seem to regard the 30 Tuning generic competences as useful in order to lead a research project such as a Master’s thesis, since only 4 of them were scored less than 3 (out of 4), 27 over 3 and 18 over 3.5. On the other hand, there is a discrepancy between the importance accorded to those skills and the perception of students’ own abilities in each of them, given that the respondents scored 10 of the 30 competences as less than 3 (out of 4), 18 between 3 and 3.5 and only 2 more than 3.5.
In conclusion, the Tuning generic skills model seems to be an interesting indicator in order to evaluate the research abilities of Master’s students, although some significant progress remains to be made according to skills acquisition and development in university first cycles.

The interest in exploring the students’ perception about their own competence gaps could define future directions for this research area. Qualitative research based on student interviews may be especially constructive for this purpose.

Furthermore, an implication of our results for practice may take the form of a proposal for training intervention to strengthen the profile of “research personnel in training” at the postgraduate level.

REFERENCES


